skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Bent, Russel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Although electricity transmission systems are typically very robust, the impacts that arise when they are disrupted motivate methods for analyzing outage risk. For example, N-k interdiction models were developed to characterize disruptions by identifying the sets of k power system components whose failure results in “worst case” outages. While such models have advanced considerably, they generally neglect how failures outside the power system can cause large-scale outages. Specifically, failures in natural gas pipeline networks that provide fuel for gas-fired generators can affect the function of the power grid. In this study, we extend N-k interdiction modeling to gas pipeline networks. We use recently developed convex relaxations for natural gas flow equations to yield tractable formulations for identifying sets of k components whose failure can cause curtailment of natural gas delivery. We then present a novel cutting-plane algorithm to solve these problems. Finally, we use test instances to analyze the performance of the approach in conjunction with simulations of outage effects on electrical power grids. 
    more » « less